Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways - Spinal DISC Center | Kris Radcliff, MD | New Jersey
Dr. Kris Radcliff specializes in simplifying the management of complex spine conditions and traumatic spine injuries, focusing exclusively on spine surgery, with particular expertise in the area of artificial disc replacement. Dr. Radcliff is highly experienced, having performed more than 10,000 spine surgeries. He combines conservative decision-making judgment with state-of-the-art and minimally invasive surgical techniques, endoscopic spine surgery, and artificial disc replacement.
Dr. Kris Radcliff, Kris Radcliff MD, Kris Radcliff, spinal disc center, spinal disc center new jersey, artificial disc replacement, artificial disc replacement specialist, endoscopic spine surgeon, endoscopic spine surgeon new jersey, new jersey spine surgeon, best spine surgeon in new jersey, minimally invasive spine surgery, MISS New Jersey, cervical spine surgery, cervical lamino-foraminatomy, cervical radiculopathy, artificial cervical disc replacement, anterior cervical discectomy and fusion, posterior cervical discectomy and fusion, lumbar microdiscectomy, lumbar laminectomy, minimally invasive tlif, ALIF, kyphoplasty, SI joint fusion, facet joint injections, treatment for neck pain, treatment for back pain, treatment for cervical myelopathy, treatment for cervical radiculopathy, treatment for cervical stenosis, treatment for compression fractures, treatment for degenerative disc disease, treatment for herniated disc, treatment for sciatica, treatment for si joint disorders, treatment for spinal stenosis
16776
post-template-default,single,single-post,postid-16776,single-format-standard,bridge-core-3.0,wp-schema-pro-2.7.17,qode-page-transition-enabled,ajax_fade,page_not_loaded,,qode-theme-ver-28.4,qode-theme-bridge,disabled_footer_bottom,qode_advanced_footer_responsive_1000,wpb-js-composer js-comp-ver-6.7.0,vc_responsive,elementor-default,elementor-kit-16783
 

Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways

Kristen Radcliff, Tri-Bang Tang, Jina Lim, Zina Zhang, Moeen Abedin, Linda L Demer, Yin Tintut: Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways. In: Circ Res, vol. 96, no. 4, pp. 398–400, 2005, ISSN: 1524-4571.

Abstract

Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. One of the paracrine regulators of bone-derived osteoblasts, insulin-like growth factor-I (IGF-I), is also present in atherosclerotic lesions. To evaluate its possible role in vascular calcification, we assessed its in vitro effects on proliferation and differentiation in calcifying vascular cells (CVCs), a subpopulation of bovine aortic medial cells. Results showed that IGF-I inhibited spontaneous CVC differentiation and mineralization as evidenced by decreased alkaline phosphatase (AP) activity and decreased matrix calcium incorporation, respectively. Furthermore, IGF-I inhibited the AP activity induced by bacterial lipopolysaccharide, TNF-alpha, or H2O2. It also induced CVC proliferation based on 3H-thymidine incorporation. Results from Northern analysis and tests using IGF-I analogs suggest that IGF-I effects are mediated through the IGF-I receptor. IGF-I also activated both the extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) pathways. Inhibition of either the ERK or PI3K pathway reversed IGF-I effects on CVC proliferation and AP activity, suggesting a common downstream target. Overexpression of ERK activator also mimicked IGF-I inhibition of lipopolysaccharide-induced AP activity. These results suggest that IGF-I promotes proliferation and inhibits osteoblastic differentiation and mineralization of vascular cells via both ERK and PI3K pathways.

BibTeX (Download)

@article{pmid15692088,
title = {Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways},
author = {Kristen Radcliff and Tri-Bang Tang and Jina Lim and Zina Zhang and Moeen Abedin and Linda L Demer and Yin Tintut},
doi = {10.1161/01.RES.0000157671.47477.71},
issn = {1524-4571},
year  = {2005},
date = {2005-03-01},
urldate = {2005-03-01},
journal = {Circ Res},
volume = {96},
number = {4},
pages = {398--400},
abstract = {Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. One of the paracrine regulators of bone-derived osteoblasts, insulin-like growth factor-I (IGF-I), is also present in atherosclerotic lesions. To evaluate its possible role in vascular calcification, we assessed its in vitro effects on proliferation and differentiation in calcifying vascular cells (CVCs), a subpopulation of bovine aortic medial cells. Results showed that IGF-I inhibited spontaneous CVC differentiation and mineralization as evidenced by decreased alkaline phosphatase (AP) activity and decreased matrix calcium incorporation, respectively. Furthermore, IGF-I inhibited the AP activity induced by bacterial lipopolysaccharide, TNF-alpha, or H2O2. It also induced CVC proliferation based on 3H-thymidine incorporation. Results from Northern analysis and tests using IGF-I analogs suggest that IGF-I effects are mediated through the IGF-I receptor. IGF-I also activated both the extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) pathways. Inhibition of either the ERK or PI3K pathway reversed IGF-I effects on CVC proliferation and AP activity, suggesting a common downstream target. Overexpression of ERK activator also mimicked IGF-I inhibition of lipopolysaccharide-induced AP activity. These results suggest that IGF-I promotes proliferation and inhibits osteoblastic differentiation and mineralization of vascular cells via both ERK and PI3K pathways.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
No Comments

Sorry, the comment form is closed at this time.